G.T.N. ARTS COLLEGE (AUTONOMOUS)

(Affiliated to Madurai Kamaraj University) (Accredited by NAAC with 'B' Grade)

SUMMATIVE EXAMINATION - NOVEMBER 2017

Class : I M.Sc., Mathematics Paper Code : 17PMAC11 Title of the Paper : Algebra - I Date : 06.11.2017 Time : 10.00 a.m to 01.00 p.m Max Marks : 75

Section – A [10 X 1 = 10][Answer ALL the Questions] 1. The number of conjugate classes in S_n is _____ [b] p(n+1) [c] p(n-1)[a] p(n!)[d] p(n). 2. The normalizer N(a) of an element in a group G is [a] $\{x \in G \mid xa = x\}$ [b] $\{x \in G \mid xa = a\}$ [c] $\{x \in G \mid xa = ax\}$ [d] $\{x \in G \mid xa = e\}$ 3. Suppose that G is the internal direct product of N_1, N_2, \dots, N_n . If $a \in N_i, b \in N_i$ $(i \neq j)$ then _____. [a] ab = e[b] ab = ba [c] ab = a[d] ab = b4. The number of non-isomorphic abelian groups of order 2^4 equals [a] 5 [b] 4 [c] 3 [d] 2 5. The number of ideals of a field is [a] 1 [b] 2 [c] 3 [d] 4 6. If π is a prime element in the Euclidean ring R and π/ab where a, b ϵ R Then [a] π/a [b] π/b [c] [a] and [b] [d] [a] or [b] 7. If a+ib is not a unit of J [i] then [a] $a^2 + b^2 \le 1$ [b] $a^2 + b^2 \ge 1$ [c] $a^2 + b^2 = 1$ [d] a + b = 18. The polynomical $x^2 + 1$ is [a] irreducible over R [b] monic [c] [a] and [b] [d] [a] or [b] 9. A field is said to be an extension of F if [a] F contains K [b] K does not contain F [c] K contains F [d] F does not contain K 10. The algebraic numbers forms a [a] field [c] integral domain [d] [a]and[b] [b] ring Section – B [5 X 7 = 35][Answer ALL the Questions] 11 a). If p is a prime number and p/o(G) then prove that G has an element of order P. [**OR**] b). If $o(G)=p^n$ where p is a prime number then prove that $Z(G) \neq (e)$.

12 a). If G and G^1 are isomorphic abelian groups then prove that for every integer s, G(s) and $G^1(s)$ are isomorphic.

[OR]

- b). Let G be a group and suppose that G is the internal direct product $N_1, N_2 \dots N_n$. Let $T = N_1 \times N_2 \dots \times N_n$. Then prove that G and T are isomorphic.
- 13 a). Let R be a commutative ring with unit element whose only ideals are(0) and R itself . Then prove that R is a field.

[OR]

- b). Let R be a Euclidean ring. Then prove that any two elements $a, b \in R$ have a greatest common d of the form $\lambda a + \mu b$ for some $\lambda, \mu \in R$.
- 14a). State and prove Fermat's theorem.

[OR]

- b). State and prove Einstein criterian.
- 15 a). If L is an algebraic extension of K and if K an algebraic extension of F then prove that L is an algebraic extension of F.

[**OR**]

b). Prove that a polynomial of degree n over a field can have atmost 'n' roots in any extension field.

Section -C [3 X 10 = 30]

[Answer Any THREE Questions]

- 16. State and prove third part of sylow's theorem.
- 17. Prove that every finite abelian group is the direct product of cyclic groups.
- 18. Prove that every integral domain can be imbedded in a field.
- 19. Prove that J[i] is a Euclidean ring.
- 20. Prove that the number **e** is transcendental.

Reg. No:									
----------	--	--	--	--	--	--	--	--	--

G.T.N. ARTS COLLEGE (AUTONOMOUS)

(Affiliated to Madurai Kamaraj University) (Accredited by NAAC with 'B' Grade)

SUMMATIVE EXAMINATION - NOVEMBER 2017

Cla	ass : I M.Sc., (Mathematics)	Date : 09.11.2017			
Pap	per Code : 17PMAC12	Time : 10.00 a.m to 01.00 p.m			
Tit	le of the Paper : Analysis I	Max Marks : 75			
	Section – A	[10 X 1 = 10]			
	[Answer ALL the Question	-			
1.	All compact metric space and all Euclidean space are				
	[a] Compact [b] Connected [c] Complete	[d] Continuous			
2.	$\lim \left(1+\frac{1}{n}\right)^n = \underline{\qquad}$				
	$n \rightarrow \infty$				
	[a] e^n [b] e [c] e^{-1} [d] e^{-n}				
3.	The series $\sum a_n$ is said to converge absolutely if the series	converges			
	[a] $\sum a_n$ [b] $\sum a_n $ [c] $ \sum a_n $ [d] $ a_n $				
4.	If $\sum a_n$ is a series of complex numbers which converges abso	lutely then every rearrangement of			
	$\sum a_n$				
	[a] Diverges [b] Converges [c] Continuou	IS [d] Bounded			
5.	Every uniformly continuous function is				
	[a] Converges and Continuous [b] Continuous [c] not				
6.	A mapping f of a set E into R^k is said to be bounded if there is	a real number M such that \forall			
	$x \in \mathbf{E}$				
	[a] $ f(x) \ge M$ [b] $ f(x) \le M$ [c] $ f(x) \ne M$	[d] None of these			
7.	Monotonic functions have noof the second kind				
	[a] Continuous [b] Uniformly contin	uous			
	[c] Discontinuities [d] Converges				
8.	The function $f(x) = \begin{cases} 1 & if x \text{ is rational} \\ 0 & if x \text{ is irrational} \end{cases}$ then f				
	[a] f has a discontinuity of the second kind at every point x				
	[b] f has a continuity of the second kind at every point x				
	[c] f has a continuous at $x = 0$				
_	[d] f has a continuous at $x = 1$				
9.	Let f be defined on $[a,b]$, if f has a local maximum at a point x	$x \in (a,b)$ and if $f'(x)$ exists then			
	[a] $f'(x) \neq 0$ [b] $f'(x) = 0$ [c] $f'(x) > 0$	[d] $f'(x) < 0$			
10.	Let f be defined on [a b]. If f is differentiable at a point $x \in [a, b]$				
	[a] continuous [b] uniformly continuous [c] bo				

Section – B

[5 X 7 = 35]

[Answer ALL the Questions]

11. a) State and Prove Root Test

[**OR**]

b) If $\{P_n\}$ is a sequence in a compact metric space X then prove that some subsequence of $\{P_n\}$ converges to a point of X

12. a) Suppose (i) the partial sums A_n of $\sum a_n$ form a bounded sequence

(ii) $b_0 \ge b_1 \ge b_2 \ge \dots$ (iii) $\lim_{n \to \infty} b_n = 0$

Then prove that $\sum a_n b_n$ converges

[**OR**]

b) Define Rearrangements with example

13.a) A mapping f of a metric space X into a metric space Y is continuous on X iff $f^{-1}(V)$ is open in X for every open set V in Y

[**OR**]

- b) If f is a continuous mapping of a compact metric space X into a metric space Y then prove that f(X) is compact
- 14. a) If f is a continuous mapping of a compact metric space X into a metric space Y and E isa connected subset of X then prove that f(E) is connected

[**OR**]

b) Discuss the discontinuity of the second kind at every point by an example of a real valued function

15. a) State and prove Mean Value Theorem

[**OR**]

b) Suppose f is a real differentiable function on [a, b]and suppose $f'(a) < \lambda < f'(b)$. Then prove that there is a point $x \in (a, b)$ such that $f'(x) = \lambda$

Section – C [3 X 10 = 30] [Answer Any THREE Questions]

16. State and prove Cauchy criterion for convergence

17. Suppose (i)
$$\sum_{n=0}^{\infty} a_n$$
 converges absolutely (ii) $\sum_{n=0}^{\infty} a_n = A$ (iii) $\sum_{n=0}^{\infty} b_n = B$

(iv)
$$\sum_{k=0}^{n} a_k b_{n-k}$$
 (n=0,1,2,3,...) Then prove that $\sum_{n=0}^{\infty} c_n = AB$

18. Let E be a non compact set in R .Then Prove that

- (i) There exists a continuous function on E which is not bounded
- (ii) There exists a continuous function and bounded function on E which has no maximum

(iii) There exists a continuous function on E which is not uniformly continuous

19. Let f be monotonic on (a,b). Then prove that the se of points of (a,b) at which f is discontinuous is

at most countable

20. State and prove Taylor's Theorem

G.T.N. ARTS COLLEGE (AUTONOMOUS)

(Affiliated to Madurai Kamaraj University) (Accredited by NAAC with 'B' Grade)

SUMMATIVE EXAMINATION - NOVEMBER 2017

Class : I M.Sc. Mathematics	Date : 13.11.2017
Paper Code : 17PMAC13	Time : 10.00 a.m to 01.00 p.m
Title of the Paper : ORDINARY DIFFERENTIAL EQUATIONS	Max Marks : 75

Section – A [Answer ALL the Questions]

[10 X 1 = 10]

1. If $y_1, y_2, y_3...y_n$ are linear dependent there exist constants $c_1, c_2, ... c_n$ (not all zero) such that

 $c_1y_1+c_2y_2+\ldots c_ny_n=0$ where $c_1=c_2=\ldots c_n=0$ then $y_1,y_2,\ldots y_n$ are said to be.....

- [a] Linear dependent [b] linear independent
- [c] linear combination [d] either a or b
- 2. Find there exist n linear independent solutions of L(y)=... on I
 - [a] 0 [b] 1 [c] 2 [d] (0,1)
- 3. A linear differential equation of the form $(a_0 x^n D^n + a_1 x^{n-1} D^{n-1} + a_{n-1} x D)y=x$ where $ba_{0,a_1,a_2...a_n}$ are constants and x is either a constants is called a....

[a] Non homogeneous linear differential equation [b] Homogeneous linear

- [c] Euler linear differential equation
- [b] Homogeneous linear differential equation[d] Cauchy linear differential equation
- 4. Find the Complimentary function of $(D^2-4D+5)y=0$

[a]
$$2i \pm 1$$
 [b] $2 \pm i$ [c] $1 \pm 3i$ [d] $3 \pm 2i$

5. The formula of particular of $\frac{1}{f(D)}x^m = \dots f(m) \neq 0$

[a]
$$f(m)x^m$$
 [b] $x^m \frac{1}{f(m)}$ [c] $[f(m)^x]$ [d] $\frac{f(m)}{x^m}$

6. The legendre's linear equation is

[a]
$$[a_0(a+bx)^n D^n + \dots + a_n]y = 0$$
 [b] $[a_0(a+bx)^n D^n + \dots + a_n]y = L(Y)$
[c] $[a_0(a+bx)^n D^n + \dots + a_n]y = I$ [d] $[a_0(a+bx)^n D^n + \dots + a_n]y = x$

- 7. Find first successive approximation of the solution of $y'=e^{x}+y^{2}$, y(0)=0[a] $y_{1}=e^{x}-1$ [b] $y_{1}=e^{x}$ [c] $y_{1}=1-e^{x}$ [d] $y_{1}=e^{-x}$
- 8. The nth approximation (y_n, z_n) to the initial value problem is -----

$$[a] y_{n} = y_{0} + \int_{x_{0}}^{x} f(x, y_{n-1}, z_{n-1}) dx : Z_{n} = z_{0} + \int_{x_{0}}^{x} f(x, y_{n-1}, z_{n-1}) dx$$

$$[b] y_{n} = y_{0} - \int_{x_{0}}^{x} f(x, y_{n-1}, z_{n-1}) dx : Z_{n} = z_{0} - \int_{x_{0}}^{x} f(x, y_{n-1}, z_{n-1}) dx$$

$$[c] y_{n} = y_{0} - \int_{x_{0}}^{x} f(x, y_{n-1}, z_{n-1}) dx : Z_{n} = z_{0} + \int_{x_{0}}^{x} f(x, y_{n-1}, z_{n-1}) dx$$

$$[d] y_{n} = y_{0} + \int_{x_{0}}^{x} f(x, y_{n-1}, z_{n-1}) dx : Z_{n} = z_{0} - \int_{x_{0}}^{x} f(x, y_{n-1}, z_{n-1}) dx$$

9. A differential equation of the form $(r(x)y')' + [q(x) + \lambda p(x)] y = 0$ is called as...

[a] Euler equation [b] picard equation [c] lipschitz vequation [d] strum liouville equation 10. The eigen functions $y_n(x)$ with the corresponding eigen values λ_n are given by

 $y_{n}(x)=e^{x}\sin \mu_{n}^{x} and\lambda = \mu_{n}^{2}, n = 1, 2, ..., where \mu_{n} \text{ are positive roots of }$ $[a] \ \mu = \tan \mu a \quad [b] \ \mu_{n} = \tan \mu a \quad [c] \ \mu_{3} = \tan \mu a \quad [d] \ \mu = \tan \mu^{5} a$ $Section - B \qquad [5 X 7 = 35]$ [Answer ALL the Questions]

11. a) Show that the solutions e^x , e^{-x} , e^{2x} , of (y''') - 2(y'') - (y') + 2y = 0 are φ independents and hence or otherwise solve the given equation.

[OR]

- b) If $y_1(x)$ and $y_2(x)$ are any two solutions of $a_0(x)y''(x) + a_1(x)y'(x) + a_2(x)y(x) = 0$, then the linear combination $c_1y_1+c_2y_2$ where c_1 and c_2 are constant, is also a solution of the given equation.
- 12. a) Solve $x^{3}(y'') + 2x^{2}(y'') + 3x(y') 3y = 0$

[OR]

b) Solve the differential equation $x^2y''+2xy'=\log x$

13. a) Solve
$$(x^3D^3 + 2x^2D^2 + 2)y = 10x + \frac{10}{x}$$

[OR]

- b) Solve $(x+a)^2 y'' 4(x+a) y'+6y = x$
- 14. a) Using the picard's of successive approximation, find the 3^{rd} approximation of the solution φ the equation $y'=x+y^2$ where y=0 when x=0

[**OR**]

- b) Find three successive approximation of the solution of $y'=e^{x}+y^{2}$, y(0)=0
- 15. a) For the initial value problem $y' = y^2 + \cos^2 x$, y(0)=0 determine the interval of existence of its solution given that R is the rectangle containing origin;

$$\mathbf{R}:\left\{\left(x,y\right): 0 \le x \le a, \left|y\right| \le b, a \succ \frac{1}{2}, b \succ 0\right\}$$

- b) Find the eigen values and eigen function of the strum liouville problem
 - $x'' + \lambda x = 0, x'(0) = 0, x''(L) = 0.$

Section
$$- C$$
 [3 X 10 = 30]

[Answer Any THREE Questions]

- 16. State prove Abel's formula for general term.
- 17. Solve $(x^2D^2 + xD + 1)y = \log x \cdot \sin \log x$
- 18. Solve $16(x+1)^4 y^4 + 96(x+1)^3 y^3 + 104(x+1)^2 y^2 + 8(x+a) y^1 + y = x^2 + 4x + 3$
- 19. Find the 3rd approximation of the solution of the equation

$$\frac{dy}{dx} = z, \frac{dz}{dx} = x^2 z + x^4 y$$
 by picard's method y=5 and z=1 when x=0.

20. Find the Eigen values and eigen function of the strum liouville problem $y'' + \lambda y = 0$, with y(0)+y'(0) and y(1)+y'(1)=0.

G.T.N. ARTS COLLEGE (AUTONOMOUS)

(Affiliated to Madurai Kamaraj University) (Accredited by NAAC with 'B' Grade)

SUMMATIVE EXAMINATION - NOVEMBER 2017

Class : I M.Sc. Maths Paper Code : 17PMAC14 Title of the Paper : NUMERICAL ANALYSIS Date : **15.11.2017** Time : **10.00 a.m to 01.00 p.m** Max Marks : **75**

[10 X 1 = 10]

Section – A [Answer ALL the Questions]

1. If $f(x) = (x - \xi)^m g(x) = 0$ where g(x) is bounded and $g(\xi) \neq 0$ then ξ is said to be a _____ [a] Single root [b] double root [c] multiple root [d] no root.

2. The root of the equation $\cos x - xe^x = 0$ is contained in the interval _____

 $[a] (0.5,1) \qquad [b] (0,1) \qquad [c] (1,2) \qquad [d] (0,2)$

3. A matrix A is said to be a lower triangular if $a_{ij} = 0$ for

[a] i > j [b] j > 1 [c] j > i [d] $j \ge i$

4. The eigen values of a positive definite matrix are _____

[a] All negative [b] all positive [c] equal to zero [d] may be positive (or) negative. 5. The truncation error of a Taylor's series of a polynomial of degree n is ____

[a]
$$\frac{1}{(n+1)!} (x - x_0)^{n+1} f^{(n+1)}(\xi)$$
 [b] $\frac{1}{(n)!} (x - x_0)^{n+1} f^{(n+1)}(\xi)$
[c] $\frac{1}{(n-1)!} (x - x_0)^{n+1} f^{(n+1)}(\xi)$ [d] $\frac{1}{(n+1)!} (x - x_0)^{n+1} f(\xi)$.

6. $E[f(x_i)] =$ _____

[a]
$$f(x_i + h)$$
 [b] $f(x_i - h)$ [c] $f(x_i - h/2)$ [d] $f(x_i + h/2)$

7. Name the rule for the following expression $\int_{a}^{b} f(x)dx = ((b-a)/2)[f(a) + f(b)]$

[a] Trapezoidal rule [b] Simpson's 1/3 rule [c] Simpson's $3/8^{th}$ rule [d] Runge kutta method 8. Simpson's $3/8^{th}$ rule is obtained by taking n= ____ n Newton's cote's integration method

[a] 0 [b] 3 [c] 2 [d] 1.

9. If no product of the dependent variable y(t) with itself or any one of its derivatives occurs then the equation is said to be _____

[a] Nonlinear [b] linear [c] quadratic [d] Homogenous 10. In the second order Runge Kutta method, $K_1 =$ ____

[a]
$$hf(t_j, u_j)$$
 [b] $h + f(t_j, u_j)$ [c] $h - f(t_j, u_j)$ [d] $f(t_j, u_j)$
Section – B [5 X 7 = 35]
[Answer ALL the Questions]

11. a) Perform five iterations of the bisection method to obtain the smallest positive root of the equation $f(x) = x^3 - 5x + 1 = 0$.

[OR]

- b) Use synthetic division and perform two iterations by Birge-Vieta method to find the smallest positive root of the equation $x^4 - 3x^3 + 3x^2 - 3x + 2 = 0$.
- 12. a) Solve the equations $x_1 + x_2 + x_3 = 6$, $3x_1 + 3x_2 + 4x_3 = 20$, $2x_1 + x_2 + 3x_3 = 13$ using Gauss Elimination method.

[**OR**]

b) Find
$$A^{10}$$
 when $A = \begin{bmatrix} 2 & 2 \\ 2 & -1 \end{bmatrix}$

13. a) Find the unique polynomial of degree 2 or less such that f(0) = 1, f(1) = 3, f(3) = 55, using the Lagrange interpolation.

[OR]

b) Find the values of f(-0.5) and f(0.5) for the following values of f(x) and f'(x).

x	-1	0	1
f(x)	1	1	3
f'(x)	-5	1	7

Using piecewise cubic hermite interpolation.

14. a) Find the Jacobian matrix for the system of equations $x^2 + y^2 - x = 0$, $x^2 + y^2 - y = 0$ at the point (1,1).

[OR]

- b) Evaluate the integral $I = \int_{0}^{1} \frac{dx}{1+x}$ using
 - (i) Composite Trapezoidal rule
 - (ii) Composite Simpson's rule with 2, 4, and 8 equal sub intervals.
- 15. a) Solve the initial value problem $u' = -2tu^2$, u(0) = 1 with h = 0.1, 0.2 using Euler method.

[**OR**]

b) Determine the first three non-zero terms in the Taylor series for the initial value problem $u' = t^2 + u^2$.

Section -C [3 X 10 = 30]

[Answer Any THREE Questions]

16. Find the root of the equation $\cos x - xe^x = 0$ using Secant and Regula Falsi method.

17. Find all the eigen values and eigen vectors of the matrix

$$A = \begin{bmatrix} 1 & \sqrt{2} & 2 \\ \sqrt{2} & 3 & \sqrt{2} \\ 2 & \sqrt{2} & 1 \end{bmatrix}.$$

18. Calculate the differences and obtain the forward and backward difference polynomials for the following data

x	0.1	0.2	0.3	0.4	0.3
f(x)	1.4	1.56	1.76	2.00	2.28

Also interpolate at x = 0.25, 0.35.

19. Evaluate the integral $I = \int_{1}^{2} \int_{1}^{2} \frac{dx}{1+x}$ using the trapezoidal rule with h=k=0.5 and h=k=0.25.

20. Solve the initial value problem $u' = -2tu^2$, u(0) = 1 with h = 0.2 on the interval [0,1] using the Fourth order classical Runge Kutta method.

G.T.N. ARTS COLLEGE (AUTONOMOUS)

(Affiliated to Madurai Kamaraj University) (Accredited by NAAC with 'B' Grade)

SUMMATIVE EXAMINATION - NOVEMBER 2017

Class : I M.Sc. Maths Paper Code : 17PMAE11 Title of the Paper : INTEGRAL EQUATIONS

Date : **17.11.2017** Time : **10.00 a.m to 01.00 p.m** Max Marks : **75**

[10 X 1 = 10]

Section – A [Answer ALL the Questions]

[a]
$$f(x)g(x) = \int_{a}^{x} K(x,t)y(t)dt$$
. [b] $g(x)y(x) = f(x) + \lambda \int_{a}^{x} K(x,t)y(t)dt$
[c] $\int_{a}^{b} K(x,t)g(t)dt = f(x)$ [d] $y(x) = f(x) + \lambda \int_{a}^{x} K(x,t)y(t)dt$.

- 2. Which is minkowski inequality [a] ||f+g|| > ||+f||+||g|| [b] ||f+g|| < ||+f||+||g|| [c] $||f+g|| \le ||+f||+||g||$ [d] ||f+g|| = ||+f||+||g||
- 3. If $d^2y|dx^2(XY)=0$, $Y(a)=Y_1, Y(b)=Y_2$ is a _____
- [a] Initial value problem [b] bounded [c] final value problem [d] Boundary value problem 4. The ordinary linear differential equations order n:

$$[a] y^{n} + a_{1}(x)y^{n-1} + a_{2}(X)y^{n-2} + \dots + a_{n}(x)y = \varphi (x)$$

$$[b] y^{n} - a_{1}(x)y^{n-1} - a_{2}(X)y^{n-2} - \dots - a_{n}(x)y = \varphi (x)$$

$$[c] y^{n} - a_{1}(x)y^{n+1} + a_{2}(X)y^{n+2} + \dots + a_{n}(x)y = \varphi (x)$$

$$[d] y^{n} + a_{1}(x)y^{n-1} + a_{2}(X)y^{n-2} + \dots + a_{n}(x)y \neq \varphi (x)$$

5. A homogeneous fredholm integral equation of the 2nd kind is _____

[a] $X(Y) = \lambda \int_{a}^{b} K(x,t)y(t)dt$ [b] $Y(x) = \lambda \int_{a}^{b} K(x,t)y(t)dt$ [c] $Y(x) = \lambda \int_{a}^{b} K(t,x)y(x)dt$ [d] $Y(x) = \lambda \int_{a}^{b} K(x)y(t)dt$

6. If φ (x) is continuous and φ (x) \neq 0 on the interval (a,b) & φ (x) = $\lambda_0 \int_a^b K(x,t) \varphi(t) dt$.

Then $\varphi(\mathbf{x})$ is known as _____

[a] Eigen value [b] Eigen vectors [c] Eigen function [d] Eigen elements

7. The eigen functions of the homogeneous system is _____ [a] $(1-\lambda A^{T})c=0$ [b] $(1-\lambda A^{T})c\neq 0$ [c] $(1-\lambda A^{T})c=3$ [d] $(1-\lambda A^{T})c=1/2$

8. Any solution $z_0(x)$ of the transposed homogeneous integral equation z(x) corresponding to the eigen value λ_0 is of the form $z_0(x) =$ _____

[a] $\sum_{0=1}^{r} b_i z_{oi}(x)$ [b] $\sum_{0=1}^{r} z_{oi}(x)$ [c] $\sum_{0=1}^{\pi} b_i z_{oi}(x)$ [d] $\sum_{0=\infty}^{r} b_i z_{oi}(x)$ 9. The equation $y_n(x) = f(X) + \sum_{m=1}^{n} \int_{a}^{b} K_m(x,t) f(t) dt$ proceeding to the limit as $n \to \infty$, we get _____ series. [a] continuous [b] Neumann [c] finite [d] none

10. If $k_n(x,t)$ be iterated kernals then $R(x,t\lambda) = \sum_{m=1}^{\infty} \lambda^{m-1} k_{m(x,t)}$

[a] $\sqrt{x, t; \lambda}$ [b] $\sqrt{x, y}$ [c] $\sqrt{y, z}$ [d] $\sqrt{x, t; f}$ Section – B [Answer ALL the Questions] [5 X 7 = 35]

11. a) Show that the function $y(x)=(1+x^2)^{-3/2}$ is a solution of the volterra

integral equation
$$y(x) = \frac{1}{1+x^2} - \int_0^x t/1 + x^2 y(t)$$

[**OR**]

b) Define fredholm integral equation and Explain any two special cases.

12. a) Convert the following Differential Equation into integral equation y''+y=0 when y(0)=0=y'(a).

[OR]

b) The integral equation $y(x) = \int_{0}^{x} (x-t)y(t)dt - x\int_{0}^{1} (1-t)y(t)dt$ is equivalent to y''-y=0, y(0)=0=y(1)

13. a) Write about characteristic functions(or eigen functions)

[OR]

b) Solve the homogeneous fredholm equation $y(x) = \lambda \int_{0}^{1} e^{x} e^{t} y(t) dt$

14. a) Solve
$$y(x) = \cos x + \lambda \int_{0}^{\pi} \sin x y(t) dt$$

[OR]

b) Solve
$$y(x)=f(x)+\lambda \int_{0}^{1} xt y(t)dt$$
.

15. a) Evaluate the resolvent kernel for what values of λ the solution does not exist. Obtain solution of the integral equation is $y(x)=1+\lambda \int_{0}^{1} (1-3xt)y(t)dt$.

b) Solve the inhomogeneous fredholm integral equation of the 2^{nd} kind $y(x)=2x+\lambda$ $\int_{0}^{1} (x+t)y(t)dt$. by the method of successive application to the first order taking $y_0(x)=1$.

Section – C [3 X 10 = 30] [Answer Any THREE Questions]

16. Show that function $y(X) = \sin \frac{\pi x}{2}$ is a solution of the fredholm integral equation $y(x) - \frac{\pi 2}{4} \int_{0}^{1} k(x, t) y(t) dt = \frac{x}{2}$ where the kernel k(x,t) is of the form $K(x,t) = \begin{cases} \frac{x(2-t)}{2} & 0 \le x \le t \\ \frac{t(2-x)}{2} & t \le x \le 1 \end{cases}$

17. Reduce the following boundary value problem into an integral equation

$$y'' + \lambda y = 0$$
 with $y(0) = y(1) = 0$.

- 2 -

18. Find the eigen values and eigen function of the homogeneous integral

equation
$$y(x) = \lambda \int_{0}^{\pi} (\cos^2 x \cos 2t + \cos 3x \cos^3 t) y(t) dt.$$

19. Invert the integral equation $y(x)=f(x)+\lambda \int_{0}^{2\pi} (\sin x \cos t) y(t) dt$.

20. Let $y(x)=f(x)+\lambda \int_{a}^{x} k(x,t)y(t)dt$ be given volterra integral equation of the second kind suppose that

- i. Kernel $k(x,t) \neq 0$, is real and continuous R, for which $a \le x \le b$, $a \le t \le b$. Also $let|k(x,t)| \le M$ in R
- ii. $f(x) \neq 0$ is real and continuous in the interval I, for which $a \le x \le b$. Also let $|f(x)| \le N$ in I
- iii. λ is a contant then I has a unique continuous solution in I and this solution is given by the absolutely and uniformly converges series

$$\mathbf{Y}(\mathbf{x}) = \mathbf{f}(\mathbf{x}) + \lambda \int_{a}^{x} k(x,t) y(t) dt + \lambda^{2} \int_{a}^{x} k(x,t) \int_{a}^{x} \mathbf{k}(t,t_{1}) dt_{1} dt_$$